Third Operating Session – CN 403 and 404

Over the past few weeks I have held another solo operating session. This follows the CP operating session I had. I ran CN 404 and then CN 403 through the layout, doing some local switching along the way.

CN 404

On my layout, train CN 404 runs east from Melville, SK to Winnipeg, MB. This train performs local switching in Georgetown, the town that is the main focus of my layout. CN 404 switches the Irving Oil spur and the Manitoba Pool grain elevator, when required.

In this session, CN 404 spotted a tank car at Irving Oil and exchanged grain cars at the Pool elevator.

Please note that I had the train number wrong in the video. In Canada eastbound trains have an even train number and westbound trains have odd numbers.

 

CN 403

As you might guess, CN 403 on my layout runs from Winnipeg to Melville! The train also does local switching in Georgetown, but only switches the CP interchange track as required. It also switches the Cargill grain elevator in Helene.

I had to split the videos to get them under the 15 minute limit.

In the first video, CN 403 switches Georgetown. It had one car to drop off for CP and picked up three cars.

The second video shows CN 403 working the Cargill elevator.

Thanks for watching!

PS if you want to see the real train CN 404, I happened to catch it in Winnipeg in March.

Ready for Service

Walthers All-Door Boxcars
Walthers All-Door Boxcars

I picked up these two Walthers all-door boxcars at a toy show in Morden, Manitoba. I just had a few steps to go through before they were ready for service.

This kind of car was used for paper service and most were owned by paper companies, such as Boise Cascade and Weyerhauser as seen here. I paid $30 for the pair and I was pleased to have them, as I didn’t have any cars of this type.

 

Coupler Height Check

First it gets put on the test track to check coupler height.

Coupler height check
Coupler height check

That end was good. I flipped the car around to check the other end.

Coupler height FAIL
Coupler height FAIL

This was a FAIL. The coupler was way too low, with the whisker hitting the plate before it could even couple up. It was also obvious that the coupler itself was too low.

I checked the coupler and there wasn’t much play in the box so the solution was to add some washers between the truck and the car body to raise that end.

Adding washers
Adding washers

It ended up taking two washers before I could get the end raised enough. I also snipped off most of the whisker using side cutters.

Good coupler match
Good coupler match

When you raise one end, you have to check the other end again to ensure it didn’t throw that end off! In this case it was OK.

 

Weight Check

Now it was time to check the weight of the car to see if it matched NMRA standards.

Car Weight Check
Car Weight Check

5 ounces was about right for the length of the car, so there was nothing to be done here.

 

Wheel Check

Finally I checked the wheel spacing using an NMRA standards gauge.

Wheel Spacing Check
Wheel Spacing Check

No problems here! There is rarely a problem with wheel spacing on cars, but if there is, the usual fix is to twist one of the two wheels until the spacing is correct.

 

Finish the Paperwork

I printed up the car cards in Easy Model Railroad Inventory and stuck some destination cards in the pocket, then put the car cards into the appropriate slot.

Car Cards - Check!
Car Cards – Check!

 

Ready for Service

The last step was to actually put them on the layout, ready for operation. They are on the CN-CP interchange track now and will get picked up by CP 948 on my next operations session.

Ready for service!
Ready for service!

Further reading:

CP 949 and CP 975

After the last operating session, I had two more trains to run:

  • CP 949 (Winnipeg to Brandon via Georgetown); and
  • CP 975 (Brandon to Minnedosa)

Both are fairly limited in the switching they do in Georgetown, so they were quicker than CP 948 in particular to run.

 

CP 949

The instructions for CP 949 specify that it runs from Winnipeg to Brandon, picking up any westbound cars from the siding and dropping any Georgetown-bound cars in the siding. As it happens, it did both!

Here’s the video showing CP 949 from start to end:

I also recorded a short “on board” video using my cell phone in a very Rube Goldberg style mount on a gondola.

Check out the setup:

Rube Goldberg would have been proud
Rube Goldberg would have been proud

Note the weights clamped on to the right to counterbalance the phone. This made for a very wide load and it is not ideal. I’d appreciate any suggestions for inexpensive on-board cameras…

 

CP 975

The last train was CP 975, the Minnedosa local returning to Minnedosa.

Its switching instructions for Georgetown are to spot any Georgetown-bound cars, pick up any Minnedosa-bound cars, and head out on the Minnedosa subdivision to staging.

The train did have a car to spot on the interchange track, but it had nothing to pick up, so it was a quick stop in Georgetown before going to staging.

 

Summary

That’s the end of the CP trains that operate on my layout! The four trains that operated were:

  1. CP 976, Minnedosa local, from Minnedosa to Brandon
  2. CP 948, eastbound mainline freight, from Brandon to Winnipeg, with a lot of switching in Georgetown
  3. CP 949, westbound mainline freight, from Winnipeg to Brandon
  4. CP 975, Minnedosa local, returning from Brandon to Minnedosa

The only train I can see adding on the CP side of my layout would be a VIA Rail RDC to run on the Minnedosa subdivision. I don’t have room in CP’s staging for a full size passenger train.

Next I will be working on the scheduling for CN trains, and then I’ll be running those. I might work on coordinating the schedules to have a meet or two in Georgetown rather than just running them in sequence.

 

ALNX 396400 – A Comparison

I was out railfanning this morning along the CN Redditt subdivision. I photographed an eastbound freight train and snapped a few photos of the rolling stock. One that I photographed was ALNX 396400:

ALNX 396400 near Anola 2016/03/13
ALNX 396400 near Anola 2016/03/13

When I was processing them in Lightroom, I recognized the road number as being the same as a model I have! Here’s the model, posed similarly:

ALNX 396400 model
ALNX 396400 model

You can see that they aren’t the same at all! The model is a Bachmann Silver Series car, which is a lower price, decent quality car.

Now here are the two of them, stuck together for easy comparison:

ALNX 396400 Comparison
ALNX 396400 Comparison

To be very critical, they don’t look a whole lot alike. The detail just isn’t there on the model in comparison with the prototype, and the lettering is larger than the prototype.

On the other hand, you can buy one of these for $15.99 Canadian and they are good operators, with metal wheels and Kadee couplers. They’re certainly better detailed and much better runners than the Life-Like cars! It would not be fair to compare it to, say, an Intermountain car, because you can buy two of the Bachmann cars for the price of one Intermountain car.

I don’t want to sound like I’m crapping on the Bachmann car. For the price it is a good deal and I would be glad to buy more like it.

I was tickled pink blue to see the prototype of one of my cars!

 

Second Operating Session with Car Cards

After my first operating session with car cards, I made one significant change, then started running some CP trains. Here are a few videos showing the trains.

Train Information Card

Train Information Card from second operating session
Train Information Card from second operating session

I added a train information card to the front of the card packet. This gives the train number, origin and destination of the train, departure time, and switching instructions en route.

I’m not using the maximum cars yet, and the departure time is only used to determine the sequence of trains. At some point I’ll jiggle the times to set up meets in Georgetown.

I’ve seen one problem already – the train number is hidden by the clip. Rev 2 will be better!

The Minnedosa Local

CP 976, aka the Minnedosa Local, was the first to run. The train had GMTX 768, five cars and a caboose, which is about the longest train you can stash in the Minnedosa sub / staging without the head end being visible.

CP 976’s instructions are to proceed west to Brandon, dropping any eastbound cars in the Georgetown siding and picking up any westbound cars from the Georgetown siding. As it happened, the train had two eastbound grain hoppers that it had to drop. There was nothing to pick up so it was a relatively short run.

CP 948

CP 948, the Brandon-Winnipeg (eastbound) train was next. This is the busiest of the four CP trains I have on my layout.

CP 948 runs from Brandon to Winnipeg through Georgetown, and works Georgetown industries while it’s there. The switches to the three CP-based Georgetown industries (warehouse, team track and grain elevator) and the CN-CP interchange track have eastward-facing points, so an eastbound freight can work them easily.

948 was short coming out of Brandon, with only three cars and a caboose behind big MLW CP 4505. They had one BN car for the CN-CP interchange, an eastbound scrap gondola, and a centerbeam flatcar for the team track.

There was lots of work to do in Georgetown. The three boxcars at the warehouse had to come out, the interchange track had two cars and a locomotive to remove and deal with, and the team track had a car that was heading out.

I had to split this into two videos to stay under the 15 minute YouTube limit.

In part 2 they switched the warehouse and put their train back together before continuing on to Winnipeg.

Next Up

The next train is CP 949, the Winnipeg-Brandon train, followed by CP 975, the local going back to Minnedosa. Neither of them have much work in Georgetown so they should be quicker to operate. Read on!

Operating on the BNML, Round 2

This past Sunday, I spent 4 1/2 hours operating on William Brillinger’s layout. What fun! You may recall I operated there once already, so this was round 2.

After I arrived at Bill’s house at 1 PM, Bill offered me the choice of operating CN 532, stopped at Letellier, or a BNSF grain train from Noyes to Morris.

For background, Bill is modeling the CN Letellier subdivision between Morris, Manitoba and the US-Canadian border at Emerson, plus the BNSF track between the border and Noyes, MN, with staging at both ends (track plan).

Following Bill’s advice, I elected to take CN 532 while Bill took BNSF. After seeing what was on the train, I brought it forward into Emerson. Bill is modeling the border crossing procedure so his app covers the customs procedures required to obtain clearance to cross into the USA. You can follow that link to see the procedures. I used the app to “contact BNSF” and “request clearance”. It worked very well and seemed realistic to me.

I had a bit of work to do before crossing the border.

As I completed the crossing procedure, Bill was ready to cross the border into Canada with his train. We had to meet somewhere, so I pulled into one of the Emerson yard tracks and he passed by on his way north to Morris.

I crossed over the border, pulling slowly through the VACIS machine – a giant X-ray machine, essentially. The app told me that three cars had to be set out for further inspection by Customs. I set them out and pushed the rest of the train into a yard track behind the cars waiting for me to bring into Canada. Here’s the video for that movement:

Bill is visible in the distance, and I make a cameo as I checked to ensure the movement was able to clear the standing cars.

Once I dropped my cars, I picked up the Canada-bound cars, did the brake test (also in the app) and executed the Canadian customs procedures to cross over. I did a bit of work in Emerson and then carried on to Letellier to switch the ADM Corn Processors plant (and the Agricore elevator) there.

The ADM plant is a challenge to switch, as it has two tracks of tank cars with 5 spots each. The challenge is that the tank cars can’t just go in any location on the two tracks – each car may have a different product and products can only go in certain spots, so there is a lot of pulling and respotting cars.

William Brillinger's car cards
William Brillinger’s car cards – photo by Bill

Once I finished there, I carried on to Morris as there was no more switching to be done. Bill uses car cards, like I do, although his system is a little different. The car cards he uses incorporate the “to” and “from” and other details, whereas I use a car card with a pocket that holds the “to” slip. On my layout I don’t track where they came from.

Each car card also has a blocking code in the bottom right. This is a handy indicator to show where on the layout the car should go. In many cases the code indicates an off-layout (staging) location. Bill explains it here.

After my pickup in Noyes and the switching in Letellier, the train was a jumbled mess. I had to do switching in Morris to block the train so that all of the blocking codes were together in the train. This took a fair amount of time and the challenge is increased because there are limited siding tracks in Morris and several crossings you have to blow the horn for. I confess I forgot to blow the horn a few times. Fortunately, no train-vehicle collisions occurred.

Once the train was finally sorted, I ran around it to couple up to the head end and pulled it north out of Morris and into staging.

Note I didn’t do the mandatory brake test… oops.

Somewhere in the middle we broke for the traditional Allagash Lemon Cake with Bill’s wife and son. They are very tolerant of Bill’s train “play dates”… maybe because they get to eat cake too.

After the operating session was over, I bought a couple of tank car kits from Bill, along with one of his Simple Switch Machines that I am eager to try out. I’ll write a review once I assemble it.

On my way home up highway 75, I encountered the 1:1 scale CN 533 just north of St. Jean-Baptiste, and I photographed it approaching Morris, and passing the older Paterson grain elevator in Morris itself.

The full size CN 533 passing through Morris
The full size CN 533 passing through Morris

Thanks, Bill, for a great session and for inviting me to your layout again!

Read about my first visit

 

Putting a DCC Decoder in a Proto 1000 RDC

BC Rail Proto 1000 RDC
BC Rail Proto 1000 RDC

I installed a TCS decoder in a Walthers Proto 1000 RDC today. It was pretty straightforward!

The basic process is as follows:

  • Remove the shell (and couplers)
  • Cut traces on the board inside
  • Solder decoder wiring harness to board
  • Tape decoder down
  • Replace shell
  • Program decoder… and play!

Here are the steps. Just a generic caution – there is a chance you could damage your decoder or your RDC. Be careful and proceed with caution. I’m not responsible if you break something or hurt yourself! 🙂

The Decoder

I used a TCS T1 decoder. This is a basic no-frills decoder that comes with a separate wiring harness. The decoder features auto-adjusting BEMF for slow speed control… not really required for a speedy RDC but it came with the decoder anyway.

RDC and TCS T1 decoder
RDC and TCS T1 decoder

Removing the Shell

In order to remove the RDC’s shell, you have to remove the couplers on both end, as well as four screws.

Screws to remove
Screws to remove

On one end, you have to turn the truck to remove the screws (one per side, as shown in photo above).

The other end is easier as the screws are closer to the end of the RDC.

Coupler removed, other screws to remove
Coupler removed, other screws to remove

Once all six screws have been removed, the shell slides off pretty easily. It should look like this:

Proto 1000 RDC with shell removed
Proto 1000 RDC with shell removed

 

Cut Traces on the Board

There are three traces on the circuit board that need to be cut to enable DCC operation. They are clearly marked with an X.

X marks the spot(s) to cut
X marks the spot(s) to cut

Some instructions say to use a knife to make multiple cuts and eventually break the trace; some suggest using a pin drill to break it. I decided to throw caution to the wind and use a cordless drill.

There are a couple of risks, of course. You could drill right through the board and break a trace on the other side… or you could put too much pressure on the board and snap it. So be careful!

I used gentle pressure, with my free hand on the bottom of the board to support it, and pulsed the drill quickly to remove a bit of material at a time. I found that as long as I was careful to have the drill perfectly perpendicular to the board, it worked very well and the drill bit didn’t wander. A few minutes work and the traces were cut.

Traces cut by drill
Traces cut by drill

Naturally you must test to ensure they are actually cut! I used my ancient digital multimeter to test on each side. You test P2-P5, P1-P8 and P4 to one or the other end of the long trace that runs the length of the board.

Testing resistance
Testing resistance

All I was doing was checking to ensure there was no connection between the two points. Simply set your multimeter to measure resistance, and touch the two points. The multimeter should blink or otherwise indicate that it can’t measure resistance, meaning that there is no connection. Make sure you touch the leads together to get a zero resistance reading to confirm that your multimeter is actually working correctly.

Measuring resistance with multimeter
Measuring resistance with multimeter

My Micronta multimeter blinks “30.00” when there is no connection.

Solder the Wiring Harness

The next step is to solder the wiring harness to the board. DCC wiring harnesses use standard colours so every decoder should have the same meaning assigned to each wire colour. These are the correct colours for this particular board:

  • Orange wire (motor positive) to P1
  • Yellow wire (rear headlight) to P2
  • Black wire (left rail pickup) to P4
  • Grey wire (motor positive) to P5
  • White wire (front heading) to P6
  • Blue wire (common) to P7
  • Red wire (right rail pickup) to P8

I did not use green (function F1) or violet (function F2). These could be used for interior lighting, ditch lights etc. if desired.

You may or may not want to cut some of the wire off the harness, as the TCS harness’ wires are quite long. I elected to leave them as is.

Wiring Connections
Wiring Connections

 

Tape Decoder Down

You can’t have the decoder floating around inside the RDC, so you need to secure it somehow. The TCS T1 decoder is already in a sleeve so there is no need to cover it. I stuck a piece of double-sided tape to the circuit board and stuck the decoder to that, then coiled up the wires and used Scotch tape to secure the wires.

Decoder secured
Decoder secured

It’s important to not cover the decoder to allow it to dissipate heat.

Replace Shell

Replacing the shell is simple. Slide the shell back on, ensuring that it is oriented correctly – it won’t go on backwards. Make sure you don’t pinch any wires.

Put all six screws back in and you’re ready to program!

You might want to leave the shell off until you confirm the decoder is working

Program the Decoder

You’ll have to refer to your DCC system manual to learn how to program decoders. The TCS T1 comes programmed with address 03 so you will want to change that to something more appropriate, like the number of the RDC itself. In my case the RDC is BC-31 so I programmed it to use 0031.

I had a rising sense of panic when programming this decoder. It wasn’t responding properly and would sometimes show CANNOT READ CV VALUE on my NCE controller, yet I could tell the decoder was responding because it was twitching the motor when I was sending commands. I couldn’t get it to accept the new number…

Finally I realized that the wheels were probably dirty and that was interfering with the decoder receiving the commands. I cleaned them and everything was smooth as silk after that. Lesson learned.

Play

I drove the RDC around for a bit, then coupled up an old Athearn dummy RDC as a trailer and brought it to the CN station in Georgetown.

Proto 1000 RDC at station
Proto 1000 RDC at station

I even took a little video so you can see and hear it run. Note the headlight being turned on at the start.

So that was fun! All told it took about an hour.

For other instructions, you can follow this one from Tony’s Trains which includes replacing the lights with LEDs, or this one from TCS themselves.

PS if you want to wait, you can get Rapido’s new super cool RDC! Check out this great video from Rapido Trains.